Closing today at 11pm:HW_1A,1B,1C Closing next Wed: HW_2A,2B Closing next Fri: HW_2C (Note: No class Monday and no MSC) Note on quick bounds (HW_1C: 9,10)

$$
m(b-a) \leq \int_{a}^{b} \mathrm{f}(\mathrm{x}) d x \leq M(b-a)
$$

Example: Consider the area under

$$
f(x)=\sin (x)+2
$$

on the interval $x=0$ to $x=2 \pi$.
(a) What is the max of $f(x)$? (label M)
(b) What is the min of $f(x)$? (label m)
(c) Draw one rectangle that contains all the shaded area? What can you conclude?
(d) Draw one rectangle that is completely inside the shaded area? Conclusion?

5.3 The Fundamental Theorem of Calculus (FTOC)

Motivational Task:

Consider the function $f(t)=3 t$.
Draw the graph and using area formulas you know, compute:

1. $\int_{0}^{1} f(t) d t$
2. $\int_{0} f(t) d t$
3. $g(x)=\int_{0}^{x} f(t) d t$

Any observations?

Fundamental Theorem of Calculus

(Part 1):

Areas under graphs are antiderivatives!

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

In other words, for any constant a, the "accumulated signed area" formula

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is an antiderivative of $f(x)$.

Motivational Task:
Again, consider the function $f(t)=3 t$. Using the area of the triangle again, simplify, then differentiate:

$$
\begin{aligned}
& \text { 1. } h(x)=\int_{0}^{1+x^{3}} f(t) d t, h^{\prime}(x)=? \\
& \text { 2. } k(x)=\int_{x^{2}}^{1+x^{3}} f(t) d t, k^{\prime}(x)=?
\end{aligned}
$$

Any observations?

General form of FTOC (Part 1):

$$
\frac{d}{d x}\left(\int_{g(x)}^{h(x)} f(t) d t\right)=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)
$$

Fundamental Theorem of Calculus

(Part 2):
If $\mathrm{F}(\mathrm{x})$ any antiderivative of $\mathrm{f}(\mathrm{x})$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

